Nilai lim_(x→2)⁡ ((x-2) cos⁡(πx-2π))/tan⁡(2πx-4π) =⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 2} \ \frac{(x-2) \cos (\pi x- 2 \pi)}{\tan (2\pi x - 4 \pi)} = \cdots \)

  1. \( -\frac{1}{2\pi} \)
  2. \( -\frac{1}{\pi} \)
  3. \( 0 \)
  4. \( \frac{1}{\pi} \)
  5. \( \frac{1}{2\pi} \)

Pembahasan:

\begin{aligned} \lim_{x\to 2} \ \frac{(x-2) \cos (\pi x- 2 \pi)}{\tan (2\pi x - 4 \pi)} &= \lim_{x\to 2} \ \frac{(x-2) \ \cos \pi (x- 2)}{\tan 2\pi (x - 2)} \\[8pt] &= \lim_{x\to 2} \ \cos \pi (x- 2) \cdot \lim_{x\to 2} \ \frac{(x-2)}{\tan 2\pi (x - 2)} \\[8pt] &= \cos \pi(0) \cdot \frac{1}{2\pi} = \cos 0 \cdot \frac{1}{2\pi} \\[8pt] &= 1 \cdot \frac{1}{2\pi} = \frac{1}{2\pi} \end{aligned}

Jawaban E.